Lie Methods in Growth of Groups and Groups of Finite Width
نویسندگان
چکیده
In the first, mostly expository, part of this paper, a graded Lie algebra is associated to every group G given with an N -series of subgroups. The asymptotics of the Poincaré series of this algebra give estimates on the growth of the group G. This establishes the existence of a gap between polynomial growth and growth of type e √ n in the class of residually–p groups, and gives examples of finitely generated p–groups of uniformly exponential growth. In the second part, we produce two examples of groups of finite width and describe their Lie algebras, introducing a notion of Cayley graph for graded Lie algebras. We compute explicitly their lower central and dimensional series, and outline a general method applicable to some other groups from the class of branch groups. These examples produce counterexamples to a conjecture on the structure of just-infinite groups of finite width.
منابع مشابه
Lie Algebras and Growth in Branch Groups
We compute the structure of the Lie algebra associated to two examples of branch groups, and show that one has finite width while the other has unbounded width. This answers a question by Sidki. We then draw some general results relating the growth of a branch group, of its Lie algebra, of its graded group ring, and of a natural homogeneous space we call parabolic space. Finally we use this inf...
متن کاملOD-characterization of $U_3(9)$ and its group of automorphisms
Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملLocally finite basic classical simple Lie superalgebras
In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.
متن کاملINEXTENSIBLE FLOWS OF CURVES IN LIE GROUPS
In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.
متن کامل